NOISEBERGS IN Z-GAUSSIAN INTERFERENCE CHANNELS

Max H. M. Costa Unicamp, Brazil

May 2011

Chinese University of Hong Kong

Summary

- Z-Gaussian Interference Channel as a degraded interference channel
- Discrete Memoryless Channel as a band limited channel
- Multiplex Region: growing Noisebergs
- Overflow Region: back to superposition

Z-Gaussian Interference Channel

Degraded Gaussian Interference Channel

Gaussian Broadcast Channel

$$C_{BC} \{R_1, R_2\}: \qquad 0 \le R_1 \le \frac{1}{2} \log(1 + \alpha P)$$

$$0 \le \alpha \le 1 \qquad 0 \le R_2 \le \frac{1}{2} \log\left(1 + \frac{(1 - \alpha)P}{1 + N_2 + \alpha P}\right)$$

Differential capacity

$$C = \iint d^2 C = \frac{1}{2} \log \left(1 + \frac{P}{N} \right)$$

Discrete memoryless channel as a band limited channel

Superposition coding

Superposition coding

Multiple Access Channel

Degraded Interference Channel

- One Extreme Point

Degraded Interference Channel

- Another Extreme Point

Intermediary Points (Multiplex Region)

Admissible region for (λ, h)

Intermediary Point (Overflow Region)

Admissible region

The Z-Gaussian Interference Channel Rate Region

Admissible region

The Z-Gaussian Interference Channel Rate Region

Admissible region

The Z-Gaussian Interference Channel Rate Region

Optimized achieveable region for Gaussian signaling

 \Box Simple 2-D parameter space: (λ , h)

 Needs entropy power-like inequality to establish capacity region